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ABSTRACT

The purpose of this study is to determine the magnitude of
error introduced due to wing vibration when measuring atmospheric
turbulence with a wind probe mounted at the wing tip and to determine
whether accelerometers mounted on the wing tip are needed to correct
for this error. A spectrum analysis approach is used to determine
the error. Estimates of the B-57 wing characteristics are used to
simulate the airplane wing, and von Karman's cross spectrum function
is used to simulate atmospheric turbulence. The major finding of
the study is that wing vibration introduces large error in measured
spectra of turbulence in the frequency's range close to the natural

frequencies of the wing.
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1.0 INTRODUCTION

Progress in applying spectrum analysis in aeronautical engi-
neering is fostering the measuring of the atmospheric turbulence
cross spectra, especially across wing spans. Measuring the atmo-
spheric turbulence spectrum across the wing span requires wind sensors
mounted on the wing tips, where the sensors are exposed to error due
to wing vibrations. Determining this error requires comparison
between the spectrum of the wing tip velocity and spectrum of
atmospheric turbulence. This study demonstrates a procedure to
estimate the wing tip velocity spectrum and the error introduced due
to wing vibration when measuring atmospheric turbulence with a wind
probe mounted at the wing tip of a B-57 type airplane. The wing
characteristics of a B-57 are used for modeling the airplane wing
because NASA is currently planning to use this airplane to acquire
atmospheric gust gradient data across the wing span. The purpose of
this study is to determine whether the error introduced in measuring
atmospheric turbulence is large enough to justify mounting accelero-
meters on the wing tip to correct for the error introduced into the
measured turbulence data due to the wing vibration.

An introduction to spectrum analysis is believed useful in
order to clarify the general solution technique and introduce the
major terms of spectrum analysis. Spectrum analysis is based upon
transferring the system from the time domain to the frequency domain.

The form of the response of a linear system in the time

domain to a single arbitrary input p(t) is given by Duhamel's integral:



w(t) = J p(t) h(t - 1)dt (1)

where h(t) is the response of the system to a unit impulse. If p(t)

is a random input, evaluating the integral becomes meaningless because
the integral represents only one sample of a random distribution of
responses. To overcome this difficulty, Duhamel's integral can be
transformed from the time domain to the frequency domain for stationary

random inputs. The Fourier transform of Duhamel's integral is:
W(w) = P(w) Z(w) (2)

where the frequency response function Z(w) is the Fourier transform of
h(t) and represents the response of the system to a sinusoidal input.
In general, the functions in Equation (2) are complex valued functions
and contain both magnitude and phase information. In order to study
only the magnitude of the response in the frequency domain, the power

spectrum of the response is defined by:
¢, (©) = W(w) Ww) = P(w) Z(w) P(w) Z(w) = ¢p(w) 12(w) |2 (3)

where ¢p is the power spectrum of the input. This equation is the
fundamental result of spectral analysis and equates the response spec-
trum to the product of the input spectrum and the square of the
magnitude of the frequency response. References [1] and [2] discuss the
derivation of the theory and contain many examples of the application

of spectrum analysis.



The input-output relationship of Equation (3) can be used to
utline the general solu
the frequency response function, Z, is determined via the "equation
of motion"; second, the input spectrum, ¢, is defined; and, third,
the product in the right-hand side of Equation (3) is calculated to
obtain the output spectrum.

The complicated system involved with wing vibrations requires

P PN 4
tcavion 1

=h

simpli
simplification in determining the frequency response function is
putting restraints on the aircraft. This study will restrain the
aircraft to only vertical motion of the center of gravity and vertical
wing bending. The coordinate system used in this study is shown

in Figure 1, where the spanwise coordinate, y, is the independent
variable and the vertical deflection, w, is the dependent variable.
The aerodynamic forces appearing in the equation of motion are those
calculated from strip theory and assume the wing is a flat plate
having stiffness similar to a B-57 wing. The gust is considered to
include only vertical wind variations. The atmospheric spectrum is
assumed to be stationary, homogeneous and isotropic; but turbulence
varies across the wing span. For calculation purposes, the von Karman

cross spectral function as defined by Houbolt and Sen [3] is assumed.
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2.0 ANALYSIS

2.1 Spectrum Analysis

The spectrum equation for a single stationary random input,
derived in the introduction, is not sufficient for calculating the
spectrum of the wing tip velocity for an aircraft with large wing span.
Assuming that the aircraft experiences a single input or gust would be
tantamount to assuming that the gust field is uniform across the span
but random in the flight direction, as depicted by the left-hand sketch
in Figure 2. This assumption is unrealistic for an aircraft
with large wing span. A better assumption is that the gust is two-
dimensional, so that it is also random across the span of the aircraft,
as depicted in the right-hand sketch in Figure 2. The assumption of
one-dimensional turbulence may lead to an underestimation of the
response of the aircraft. Houbolt [4] has shown the the root bending
moment spectrum determined by two-dimensional turbulence is signifi-
cantly higher than the root bending moment spectrum for one-dimensional
turbulence. The ratio 22/L, where 2% is the span of the aircraft and
L is the turbulence length scale, determines the validity of the assump-
tion of uniform spanwise turbulence; for 22/L approaching unity the
assumption of spanwise uniformity becomes invalid. The B-57 has a wing
span of 22 = 66 ft, and Houbolt [5] recommends a length scale of atmo-
spheric turbulence of L = 300 ft, in which case the ratio 22/L = 0.22
is large enough to warrant a two-dimensional spectrum analysis. Near

the ground L becomes smaller making the above argument even stronger.
5
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FIGURE 2 ONE-DIMENSIONAL AND TWO-DIMENSIONAL TURBULENCE ENCOUNTER [4]

Assuming a linear system with a continuum of random stationary

inputs, the response in the form of Duhamel's integral is:

L o
W(t) = J J p(.ys'l.') h(.yst - T) dT dy
-2 J -0

The Fourier transform of the above equation is:

2
W(w) = J P(y,w) Z(y,w) dy
-2

where the frequency response function Z(y,w) is a function of both
frequency w and input location y. This study will define Z(y,w) as
the velocity of_the right wing tip due to a sinusoidal gust of
frequency w located at y along the wing and w(t) as the velocity of
the right wing tip due to gust excitation along the entire wing.

The output power spectrum as defined by Equation (3) is

. L r 2
¢w(w) = W(w) W(w) = J [ Cbp(.y] sy2’w) Z(.Y-I 90)) _Z-(.Yzﬂﬂ) d.y] dyz

=2 /-2

6
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The cross spectrum is defined by:
¢p(y] s.y2aw) = P(y] aw) P(yzawj (7)
Then it is true for all cross spectra that

¢p(y1’y2’w) = P(y],w) P(Yz:wj

P(y] ’UJ) P(.stw)

Ep(.yzay-l :w) (8)

Because the domain of integration is symmetric, an appropriate choice
of the Timits of integration can be made so that the integrand can

be written as:

¢p(y] ’yzsw) Z(.y] sw) 7()’2’0’) + ¢p(.y23 .y] sw) Z(yznw) z (.y] s(l))

= ¢p(.y] ’.YZsUJ) z(.y] ,w) 7(}'2:‘”) + gp()ﬁ ,.Yz:w) Z(.stﬂz(.y] 3UJy

= ¢p(y] ,yzsw) Z(y] sw) 7()’2,(0) + ¢p(y] syzaw) Z(y] ,w) 7(y29w)

2Re[¢p(y] ’.yzaw) Z(.Y‘l ,w) _Z_(.Yz,w)] (9)

Therefore the symmetry involved in the domain of the integration and

the products of conjugate pairs permits the integral to be rewritten as:

Y orim %

¢ (w) = 2Re Y Yo | dp(y1a,0) Zlyqsw) Zly,sw) dy,dy,
-9 y*

(10)



This equation is completely general and requires only that the inputs
be stationary. It is reasonable to expect that the spectrum of the
input (in particular, turbulent input) is isotropic; in other words,
.the spectrum is a function of the separation distance [meaning
¢ (y],yz) = ¢D(ly1 - yzl)] only and independent of direction. This

p
assumption can further simplify the integral by making the variable

substitutions s = Yy - Y, and y = Yo and interchanging the order of

integration so that:

Tim 2% 2-s

o (w) = s*0 ¢ (s,w) 2Re Z(y,w) Z(y + s,w) dy| ds

W p
s* -2

(11)
This equation is the final form of the spectrum equation that
will be used in this study. Note that ¢p(s,m) is the cross spectrum of
the inputs, which within this study is the cross spectrum of atmospheric
turbulence. The cross spectrum of turbulence represents the contribu-
tion of the frequency w to the covariance of the vertical velocity at

two points along the wing span separated by a distance s.

2.2 Mechanical Analysis

Consider a nonuniform wing (chord, beam stiffness, and mass
varying along the span) free to move and bend vertically and subjected
to a sinusoidal vertical gust at a spanwise element of width A centered

at y = y*. The balance of forces then requires that

Fo = -Fp = Fy + Fg 8(y.y%) (12)

8



where FS is the force due to beam stiffness, FI is the inertial force,
and FM and FG are aerodynamic forces due to translatory wing motion and
due to vertical gust, respectively. The function 8(y,y*) selects the
portion of the wing which is subjected to the gust and is zero every-

where except between y* + A/2, where it has the value of unity. The

theory of strength of material states:

2 2
Fs = |E1 23 (13)
Yy oy

where EI is the beam bending stiffness and w is the vertical deflection

of the wing. Newton's law gives:

-n
1}

[ = MW (14)

Theodorsen in his famous NACA report [6] showed that the force due to
wing motion for a two-dimensional wing is:

2. .
F = mpb%W + 2moVb C(k) W (15)

where V is the mean flight speed, p is the density of the flight medium,
and b is the semi-chord of the wing. The Theodorsen function, C(k), is
a function of the reduced frequency (k = wb/V) of the motion. Both
References [2] and [7] develop and apply the Theodorsen function.
Defined in terms of the Bessel function, the Theodorsen function is:

.. J1(J] + Yo) + Y1(Y] - JO) - i(Y]YO + J]JO)

16
(9, + vo)2 + (Y, - JO)2 (16)



Note that the argument of the functions is k, the reduced frequency of
the motion. The 1ift due to a gust acting on a two-dimensional wing

with semi-chord b as reported in [2] is:
F. = 2moV2b (Y| K(k) 17
G PV Dly (17)

where K(k) is the Kussner function. It too is dependent on reduced
frequency of the gust. 1In terms of the Theodorsen function and Bessel

functions, the Kussner function is defined:

K=C(J, - 1J1) + id (18)

0 1

The forces may be added to yield the partial differential equation:

52 3%w 2 2 u
—= |EI ——E} = -mW - Teb"W - 2mpVb C(k) w + 2mpVb K(k) V—G(y,y*)

3y2 Yy (19)

The boundary conditions are:

w'(2,t) = w"(g,t) = w'(-2,t) = w"(-2,t) = 0 (20)

meaning no shear or moment at the wing tips, while the time dependence
will be taken to be periodic, as discussed later.
Assume the vertical deflection w(y,t) may be expanded in its

natural modes,'{¢i}T;1, as:

Wy t) = ff] 0 (£) 6(y) (21)
1:

10



Substitution of the solution expanded in its natural modes into the
governing Equation (19)yields, after some algebra, an equation for the
spatial dependence (the free vibration equation) and another for the

time dependence:

82 32 2 (22)
— |[EIl =5 ¢, = mw, "¢, for -4 <y<Q 22
8y2 3y2 i s BRA

where w5 is the natural frequency of the ith mode. The boundary condi-

tions of the differential equations are:

0;"(8) = ¢;"(-2) = ¢;"(2) = ¢;"(-2) = 0 (23)

which corresponds to the shear and bending moment being zero at the ends,
as is the case for free ends.

The natural modes are orthogonal [2] because of the choice of

boundary conditions so that:

[} 2 { M.w. for i=73
nyn — 2 = J
J (EI¢.i ) ¢jd.y = U).i J mq).i(bjdy =

% % 0 for i # j

(24)
Then by using the orthogonality property of the modes, the
differential Equation (19) becomes a system of linear differential equa-
tions in terms of the natural modes:
2
Moy gy = -Mp

N N
_ . 2 T s T os
n%n -M fi, - ﬂpr jé% Anjnj ZTrpVbR C(k) jé] annj

+ 2moVPby K(K) YL 4. (y%) aly*)a (25)

11



Where

L %

~ 2 T

Anj = J a ¢n¢jdy and an J a¢n¢jdy
-2 -2

are coefficients of the aerodynamic cross terms, the weighting function
of the integrals a(y) = b(y)/bR is the semi-chord distribution. We

now introduce the variables:

wb
_ "R vt
k = ' and S = - (27)

and assume sinusoidal output to sinusoidal input; in other words, we
assume the variables are of the form u =’Ee1ks and s ='ﬁne1ks
substitution of the above variables and division by pr25e1kS, the

After

system of linear differential equations becomes a system of linear

algebraic equations:

0 % = KW E + kP f% A .g. + 2ik C(k) ﬁ% B .E
Unfln & = KW ni%; & nit

3
n=n j=1 =
2bR K(k)
— * *) .
+— o, (y*) a(y*) (28)
w. b
_ nR
where Qn =y
" - bRAnj
nj S
. beB, -
nj S

12
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&n bR:ﬁ

This is the final form of the equations which will be used in
the program. Many of the constants of the equations are calculated by
integrating products of the natural modes by different weighting func-
tions, and they can be determined as soon as the free vibration problem
has been solved for the different modes. The solution Eh = ﬁh/bR(V/E)
represents the amplitude of the modal response of the deflection of the
wing to sinusoidal gust with unit change in angle of attack normalized
by the reference semi-chord. The solution, E g e‘ks, may be

differentiated with respect to time to give the amplitude of the wing

tip velocity of the modal response:

3

"n

- T (29)

d .
—_ g = 1k —
dt °n R

= jw

Cll=<

For the particular problem of this study, the frequency response
function is defined as the velocity of the right wing tip due to a
sinusoidal gust located at y* along the wing. The frequency response

function is then:

N ﬁ'( ,w)
Z(.y*sw) = jw z_: (30)

This is the definition used in the spectrum analysis part of the program.

13



3.0 'NUMERICAL PROCEDURE

The numerical procedure is basically divided into three Sub-
routines. The first subroutine solves the free vibration problem and
determines the natural bending modes and frequencies of the wing. The
second subroutine solves the forced vibration problem and determines
the frequency response function of the wing to a sinusoidal gust at a
point along the span. Finally, the third subroutine performs the arith-
metic in the power spectrum equation and determines the wing tip velocity

spectrum.

3.1 Free Vibration: Structural Character of the Wing

The eigenvalue problem solved by this program is for a wing
vibrating in only bending modes in free space (meaning free ends, i.e.,
moment and shear are zero at the wing tips).

The differential equation is:

(EI6")" = me®s  for -L<y<2 (31)
with boundary conditions:
o"(2) = ¢"(2) = ¢"(-2) = ¢"(-2) =0 (32)

where ¢ is the natural mode or eigenfunction and w is the natural fre-
quency or eigenvalue.

The coefficients of this equation are EI, the bending stiffness
of fhe wings, and m, the mass per-unit length, and both are a function

14



of y. Both EI and m are defined symmetrically for most wings, and this
~implies that the solution of the differential equation should be either
symmetric or antisymmetric. The program takes advantage of this so that
the range of integration is cut in half (i.e., the problem needs to be
solved only for 0 <y < 2). The boundary conditions must then be
restated at the origin (or the midspan of the airplane) to be those for
a symmetric or antisymmetric function dependent upon whether an even or
odd mode is being investigated. The conditions at the origin for a

symmetric function are:

¢'(0) = ¢"(0) =0 (33)
while the conditions for an antisymmetric function are:

$(0) = ¢"(0) = 0 (34)

These will be the boundary conditions, along with those at the wing tip
(y = 2).

If the eigenvalue of the differential equation is specified,
the problem is reduced to a linear fourth order, two-point boundary
value problem, and a shooting method [10] can be used to determine the
numerical solution. The first step of the shooting method is to reduce
the single fourth order equation to a system of four first order equa-

tions. For Equation (31) the system becomes:

15



r . r Tr -
b o 1 0 o0 6
L | 2 o 0o 1 0 by
L3 - (35)
by o 0o 0 1 »
) m? | -2EI' -EI" )
| % | | E ET - ET | | % |

and boundary conditions for a symmetric mode are:
¢2(0) = ¢4(0) = ¢3(2) = ¢4(2) =0 (36)

If all the initial conditions were given, a Runge Kutta scheme could be
used to determine the numerical solution, but because the solution must
match the boundary conditions at y = 2, a shooting method must be used.
The shooting method estimates the complete set of initial conditions
and then uses a Runge Kutta scheme to determine the solution of the
initial value problem. The value of the solution of the initial value
problem at y = 2 is compared with the boundary conditions at y = & for the
two-point boundary value problem. The estimate of the complete initial
condition is improved and the procedure is repeated; in this way the
complete set of initial conditions is determined so that the solution
to the initial value problem has the correct value for the boundary
conditions at y = 2. Fortunately, for a linear system the complete set
of initial conditions can be improved to the correct initial conditions
after one trial. This will be shown true later. Because the differen-
tial equation is linear, it can be shown [8] that there exists a vector

base, {E}?=], of the solution of Equation (35). Then each solution

16




2=y
I

(37)

of Equation (35) for the boundary conditions indicated is a linear combi-

nation of the base solution:
—— 4 —
o= 2, iC, (38)
i=1
By choosing four linearly independent initial conditions, {ﬁ}?=] is

guaranteed to be a complete base. A convenient choice of linearly

independent initial conditions is:

( _I 3 r 0 4 4 O 3 ( 0
=0 g = s w0 =] 0 and g0 = | O
0 0 1 0

L 0 ) L 0 ) L 0 ) 1

+

A base of {EG}1

=1 defined by the above initial conditions and the
differential equation is commonly called a fundamental base or the fun-
damental solutions. The boundary conditions are used to determine the
constants {Ci}?=1 of Equation (38). In the case of the even mode, the

{Ci}?=] must satisfy the system of equations:

17



[ 972000 ¥yp(0)  w3o(0)  wye(0) ] [C4 ] [O]
14000 0p0(0)  wg,(0)  wg,(0) | | €,y 0
= (40)
Pr3(R)  pg(R)  Wag(f)  U,4(0) Cs 0
U14(2)  0y0(8)  wga(n)  wp,(0) | | Cy 0

If the problem was a simple two-point boundary value problem, the

Then the system of linear

4
1'

boundary conditions would be nonhomogeneous.

Equations (40)would be nonhomogeneous and the'{Ci}

4
;

=7 could be deter-
mined after the fundamental so]utions’{ﬁ}} -1 Were determined from one
trial of the shooting method. An eigenvalue problem by definition

requires that the boundary conditions be homogeneous, and this leads to
a homogeneous system of linear Equations (40) for the {Ci}?=] . Linear
algebra theory requires that the determinant of the coefficient matrix

vanish in order for the homogeneous system to have a nontrivial solu-

tion. This determinant:
12(0)  9pn(0)  ¥3,(0)  ¥,,(0)
V14000 0y (0) 3, (0)  uy,(0)
D(w) = (41)
w]4(2) w24(z) ¢34(l) ¢44(2)

js commonly called the characteristic determinant, and for'{Ci}?=]
to be determined it must vanish. Note that the determinant is a function

of w, the unspecified parameter of the differential equation.

18



Reference [9] shows that the characteristic determinant is an analytic
function of w and the eigenvalues of the differential equation are the
zeros of the function D(w). When w is an eigenvalue of the differential
equation, the characteristic determinant vanishes and the boundary con-
ditions can be satisfied as a linear combination of the four fundamental
solutions. Note that the solution of the system of linear equations

for the {Ci}?=1 is not unique; therefore an extra condition must be sup-
plied. In this study we demand that the natural modes have the value of
unity at the wing tips, which becomes our extra condition imposed on

the {Ci}?=1. The values of the derivatives of the fundamental solutions
appearing as elements of the characteristic determinant are obtained by
solving the differential equation by a Runge Kutta method. Note that
some of the terms in the determinant are already known from the defini-
tion of the fundamental solutions. Substituting in the determinant for

these values and simplifying yields:

0 1 0 0
0 0 1 0 U13(2)  ,s(0)
D(w) = =
P3(R)  wpa(R)  was(R)  wys(e) P13(2)  vy4(0)
U14(8)  Wpa(R)  wga(R)  wy,(s) (42)

The characteristic determinant is now a function of only the
first and fourth fundamental solutions because these are the only two
fundamental solutions that satisfy the conditions at the origin for a

symmefric function. The program takes advantage of this and determines

19



only two fundamental solutions. Reference [9] further discusses the
theory of linear differential equations.

The general solution procedure can now be outlined. First,
the eigenvalue is estimated; then the two fundamental solutions are
determined by a Runge Kutta Fehlberg order seven scheme. The value of
the characteristic determinant is calculated from the fundamental
solutions. A search routine checks if the eigenvalue is bracketed
between the current estimate and the previous estimate. In this case,
the program is directed to a bisection routine to improve the brackets
or continues, taking another step along the frequency line and using
this as its next estimate of the eigenvalue. After the eigenvalue has
been determined, the natural mode is normalized by a unit displacement
at the right wing tip. The new mode is integrated with previous modes
determined to calculate the aerodynamic cross terms. The program then
steps along the frequency line for its first and second estimates of the
next eigenvalue. Another example of this technique for solving eigen-
value problems is found in Reference [10].

The calculation was tested against the uniform beam and was
found to be very accurate. Three runs were made for different EI
distributions, and the program converged very quickly for the lower
modes. Figures 3 and 4 show estimates of m and bR for the B-57 used in
all the cases run.

The most difficult parameter to estimate is the beam stiffness,
EI. A static analysis was used to estimate the beam stiffness, assuming
a loading on the B-57 wing which would be used during extreme operations

and a load factor of 10 g. Appendix B shows the details of the analysis;
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the results of the analysis show that the beam stiffness is approximately:

8

9 x 10 111]

EI for Yy

1A

7

9 x 10 111] | (43)

EI for y

'V

This wing is referred to as the "standard wing" throughout the rest of
this study. Its natural modes and frequencies are shown in Figure 5.
From an in-flight experiment with the B-57, NASA/Langley Research Center
determined that the natural frequency of the first Bending mode of

the B-57 is approximately 7 Hz. In this study, a trial and error
method was used with the program to determine the beam stiffness
necessary to have a first bending mode at 7 Hz. The beam stiffness

was found to be:

9

EI =3x 10 for y < |11]

1A

8

EI = 3x 10 for y > |11] (44)

v

The wing with this beam stiffness distribution is referred to as the
"stiff wing." For comparison purposes, a third beam stiffness with

distribution

9'x 106

El for y < |11]

A

9 x 105 fbr y

EI

1v

[11] (45)

was run. Figure 6 shows the natural modes and freaquencies of this

"flexible wing."
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FIGURE 5 NATURAL MODES AND FREQUENCIES FOR THE STIFF WING
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1 0.44 0.0072 -
2 1.20 0.0198
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FIGURE 6 NATURAL MODES AND FREQUENCIES FOR THE FLEXIBLE WING
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3.2 Forced Vibration: Frequency Response Function

The final form of the equations for the frequency response
function of the wing tip deflection due to a sinusoidal gust have been

Ll _B2ennd L.. o ctamden o ol LT [ D VL S Y P ou v PP P .
pLdlnea by sepdrating vdriadbies, Iiftegraring wne spanwise inriuence,

Q

and assuming sinusoidal form for the solution. Remaining yet unsolved
is a system of linear equations for the amplitudes of the different

modal responses. The system of equations is:

4 2bja(y*)
2 2 2 - R
[gn . ] we - j; [k Rs = K CLK) an] £, = —Re— 1 K(K) ¢, (y%)
(46)
w.bR
where Q; = b ; reduced natural frequency of mode

o
n

L
; J m¢i¢idy/nprS ; normalized general mass
-2

br
5

™
n

L A
b
2 R .
i3 [ a ¢i¢jdy and B.. = ?;-I a¢i¢jdy 3 normalized

1J
2
aerodynamic cross terms

The unknowns, E% = ﬁ}/bR(V/U), are normalized amplitudes of the
modal wing tip deflection in terms of the reference semi-chord, bR’ and
the magnitude of the disturbing force, a = u/V. The remaining terms are
the reduced forcing frequency, Qj’ and the gust Tocation, y*, which for
this study are spaced evenly at 38 locations along the span. The above
system of equations is solved by Gaussian elimination for each forcing

frequency and gust location. Fortunately, the coefficient matrix does
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not change for each gust location, and the coefficient matrix is reduced
only once in subroutine GAUSS-for each forﬁing frequency. The nonhomo-
geneous part is reduced for each gust location and the amplitudes are
determined by back substitution in subroutine BACKS.

Careful examination of the cross terms, Aij and B ., shows that
they vanish when the integration is of the product of an even.mode and
an odd mode. This means that the linear system of equations becomes
uncoupled between even and odd modes, and the response of the system to
a sinusoidal input as separated into response of even modes and response
of odd modes can then be examined. Obviously, the response of the even
modes to a gust located at y is the same as the response to a gust
located at -y. The response of the odd modes to a gust is antisymmetric.
In other words, the response of the odd modes to a gust at y is the
negative of the response at -y. The system of linear equations is
solved for gust locations on only half of the wing. Shown in Figures
7-11 are the plots of the frequency response function versus the

reduced frequency of the gust for several gust locations along the

nonuniform wings.

3.3 Spectrum Equation: Wing Tip Velocity Power Spectrum

The final form of the output power spectrum due to a continuum
of stationary, homogeneous, isotropic input is obtained from Equation

(11), which can be integrated numerically using the trapezoidal rule to

yield:
. N-]
0, (ssw) = ¢,(00) Z% 2,7, + Z 9, (380) 2Re[2 Z, z] (47)
3= J=
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where N is the number of gust stations and A is the gust station width.
The spectrum program determines the wing tip velocity spectrum, there-
fore, Zi must represent the velocity at the right wing tip due to a
sinusoidal gust at station i. The frequency response function is

defined in the program as:

=
=

.

_ iw
=5

o}
[
—
3
(SN

J

where NM is the number of elastic modes considered. The summation
includes the response of only the elastic modes; the response of the
rigid body mode is not included in the summation because the navigation
system, located at the airplane's center of gravity, should be able to
subtract the motion of the center of gravity from the turbulence data
taken at the wing tip. There is a difference between the motion of the
center of gravity and the motion of the rigid body mode; the center

of gravity motion includes the motion of the even modes at the center
of gravity. An attempt should be made to filter out the elastic mode
motion from the center of gravity motion before correcting the turbulence
data because the elastic mode motion at the center of gravity can be

180 degrees out of phase with the elastic mode motion at the wing tip
and can therefore introduce a larger error in the turbulence data.

This study will assume that the motion of the center of gravity measured
by the aircraft navigation system has been filtered so that it contains
only the rigid body motion of the airplane before correcting the turbu-
lence data. In this study wing vibration is defined as the motion of

only the elastic modes of the wing.
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Note that the frequency response function is normalized by the
gust magnitude, u, and therefore represents the velocity at the wing
tip due to a unit sinusoidal gust. The input spectrum is taken as
von Karman's cross spectrum function of atmospheric turbulence [3] and
is normalized in the program by the root mean square of the turbulence,
ouz. Therefore, the wing tip velocity power spectrum is normalized by
the root mean square of the turbulence. Reference [2] gives further

examples of spectrum analysis problem solving.
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4.0 RESULTS AND CONCLUSIONS

- A study of the frequency response function will aid in under-
standing the power: spectrum. An examination of the frequency response
in the high frequency (reduced frequencies above one) domain displayed
in Figures 7-11 shows that regardless of gust Tocation, the wing tip
velocity vanishes rapidly with increasing gust frequency. Physically,
the wing is expected to respond less to higher frequencies because the
higher modes have low response amplitude. Another gust location
independent trend in the frequency response function is the extreme
maximum at low frequency, also displayed in Figures 7-11. This is
physically explainable because the gust frequency becomes close to the
natural frequency of the wing.

The more interesting trends of the frequency response functions
of the wing are the gust location dependent trends. Figures 7-11 show
the frequency resonse functions for both the standard and the flexible
wing excited at five different locations along the wing. The locations
of the gust are marked along the abscissa in Figures 5 and 6. Figure 7
shows the response of the wing due to a gust near the midspan.

Because the odd modes have their nodal point at the midspan, they

should not respond as much as the even modes. The response is particu-
larly clear in the curve for the standard wing where only the first and
third elastic modes have large peaks. The response of the flexible wing
is not quite as clear as the response of the standard wing because its

natural frequencies are so close together the curve tends to be washed
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out. Figure 8 shows the response of the wing due to gust excitation at
14.76 feet from midspan.. This gust location is at the maximum of:
second elastic mode def]ectfon and close to the nodal points of the
first and third elastic modes. The response curve should be like that
shown for the standard wing. .The Frequehcy résbonse curve for the
flexible wing shows a much more pointed maximum than the response curve
for the flexible wing shown in Figﬁfe 7 bécause in Figure 8 on1y fhe
second elastic mode is participating while in Figure 7 the maximum
consists of both the first and third elastic mode responses. The first
elastic mode has its nodal point approximately 16.5 feet from the mid
span. Figure 9 shows the frequency response function due to gust
excitation at this point. The response of the flexible wing shows a
pointed maximum characteristic of low first elastic mode participation,
while the third mode shows a great deal of participation since the
excitation is at its maximum deflection for the mode. As expected, the
standard wing shows a very small peak for its first mode response.
Figure 10 shows the response curve due to gust excitation near the
nodal point for the second elastic mode. The response of the flexible
wing shows a local minimum for the second e]astic mode response, while
the first and third elastic modes show peaks for their response. The
standard wing shows no response around the second elastic mode.

Figure 11 shows the response curve for gust excitation at 26.92 feet
from mid span, which is near the nodal point for the third and fourth
elastic modes. The curve shows minimum participation of the third and

fourth modes for both standard and flexible wings.
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The wind velocity measured at the wing tip is the sum of the
turbulence, Up(t), at the wing tip and the velocity of the wing tip,

Uw(t), due to wing vibration. The measured wind velocity is then:

Up(£) = U (£) + U () (49)

The correlation function of the measured wind is:

T

Tim 1

R () = o ?T'J U (t) V_(t + 1) dr
-T

"
= }l@ —‘f[ [Uw(t) Uw(t + 1) + Up(t) Up(t + 1)
-T

+ U, (t) Up(t + 1) + Up(t) U, (t + r):l drt

Rw(t) + Rp(t) + pr(t) + Rpw(t) (50)

The Fourier transform of the correlation equation gives the

spectrum equation

+.6 (51)

b = G, F 6y * 0 ow

m P wp

Since ¢wp = $bw, the equation can be simplified:

By = Gyt b+ 2Req (52)

where ¢p is the power spectrum of turbulence at the wing tip and ¢w is

the power spectrum of the wing tip velocity. Figures 12-15 show
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the wing tip velocity power spectrum and, for comparison, the atmo-
spheric turbulence power spectrum. The cross spectrum ¢wp contains
phase information between the wing tip velocity and the atmospheric

turbulence velocity. The equation for ¢wp used in the program is:

29
Pup = J ¢p(S) Z(2 - s) ds (53)
0

The relative error introduced due to wing tip velocity is:

Y I ™ (54)

% %

Figures 16-21 show this relative error as a function of frequency

for the three different wings and different turbulence length scales.

The flexible wing shows a large relative error throughout all the

lower frequencies. An airplane having these wing characteristics is

not recommended for measuring atmospheric cross spectra across its wing
span. The standard wing shows a large relative error close to its first
natural bending frequency. The first natural frequency can be close to
the lower frequencies of atmospheric turbulence (approximately 0.04 Hz)
if the turbulence length scale is small enough. For large turbulence
Tength scale, the maximum error introduced due to wing vibration of the
standard wing is reduced but still amounts to some 50 percent more over the
turbulence spectra scale as wL/V and; hence, for higher length scales the
frequency of the wing vibfation fs out of the frequency range which con-
tains significant turbulence energy. If the wing has characteristics
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of the standard wing, it is recommended that accelerometers be mounted

on the wing tip to obtain accurate measurements of atmospheric turbulence.
The stiff wing shows a smaller relative error than the standard wing and
the range of larger error is slightly shifted to the high frequencies.

The relative error still reaches 50 percent and for small turbulence
length scale can get close to the lower frequencies of atmospheric
turbulence. If accurate measurements of atmospheric turbulence fre-
quencies on the order of 0.22 Hz are desired when using an airplane with
the stiff wing characteristics, it is recommended that accelerometers be
mounted on the wing tip. This study concludes that to measure atmospheric
cross spectra across an airplane wing span, a stiff wing is required and
that to measure accurately the whole range of the atmospheric turbulence

spectrum, accelerometers mounted on the wing tips are required.
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APPENDIX- A
USER'S GUIDE

This appendix contains details of the computer code used for
this study. The four flow charts illustrate the complete computer code,
the free vibration subroutine, the forced vibration subroutine, and the
spectrum analysis subroutine. Following the charts is an explanation of
how to modify the computer code for different aircraft. Finally, the

complete computer code listing is provided.
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A.] FLOW CHART OF THE COMPLETE PROGRAM

NC~-Number of Mode To Start On
N ~ Total Number of Mode To Determine
NN ~ Number Modes To Determine Mode On
W ~ First Guess of Frequency

Y

Free Vibration Program

'

wi ~ Frequency

M; ~ Generalized Mass
b; ~ Mode
Aij & Bij ~ Aerodynamic Cross Product

'

Forced Program

k ~ Driving Frequency
Zi(y) ~ Response Of i Mode To Gust

1

{:::::Slnput/0utput Spectrum Program

[ ] Program {

k ~ Frequency
by ~ Power Spectrum Of Wing Tip Velocity
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A.2 FLOW CHART FOR THE FREE VIBRATION PROGRAM

MAIN
NC ~ Number of The First Mode To Determine
N ~ Number of lModes To Determine
NN ~ Number of Modes To Determine The Mode On

NN
W . Guess Of Frequency
H ~ Step Size
SUBROUTINE STRK NC,N,NN,W, H
1. Determines Coef. For Runge-Kutta
2. Fixes Nodes and Wing Plan X, RA
SUBROUTINE SZERO
A,B,C,CH Steps Along Frequency Line Until Brackets Root
I F ~ Value of Characteristic Determinant
[
SUBROUTINE RK7 i Wy AW ¢ _
Integrates Differential Equation
EL & EU ~ Error Bands e SUBROUTINE DEMO
Y ~ Solution ! MODE
X ~ Node Location and Determines Mode
; ’ _ SUBROUTINE
A Y * Y W F SECANT
S | 'y
' FUNCTION SIMPSON |
] SUBROUTINE FUN Integrates
1. Fixes Initial Condition Victor
2. Determines Value of Characteristic
Determinant
SUBROUTINE COF

Sets Up Integration

%

—

PRINT OUT

SUBROUTINE FUNEV
. [Hake Derivative
) .

l Evaluations

X l T RM, SEI

FUNCTION SET
and
Function RM

W ~ Natural Frequency
GM ~ Generalized Mass
RP ~ Modes

A,B ~ Aerodynamic Cross
Terms

(:) Input/Qutput

] subroutine

Variables Passed
Yy Between Subroutines
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A.3 FLOW CHART OF THE FORCED VIBRATION PROGRAM

INPUT

From
Free Vibra.

MAIN
NN ~ Number of Modes
N2 ~ Number of Gust Station

OUTPUT

l NN, N2

Elimination
On Coef. Mat.

—

C
E
C,D
SUBROUTINE
GAUSS
Does Gauss 7’

SUBROUTINE
BACKS
Reduces Non-hom
Victor and Back

RK ~ Frequency
Y ~ Amplitude

SUBROUTINE DO

1. Read Inputs
A, B, W, GM, RP

2. Performs Operations
That Are Frequency
Independent: GAMA OMEG

3. Fixes Driving Freg: RK

OMEGA, GAMA c,D
A,B
RK

SUBROUTINE COF

1. Sets Up Coef. Matrix: C
2. Sets Up Gust Force: D

Substitute

RK CC, RKK

Fun CC & RKK

(O 1Input/Output

(1 Subroutine

tﬂ( Variables Passed Between Subroutines
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A.4 FLOW CHART OF THE SPECTRUM PROGRAM

T MAIN

™ TL ~ Turbulence Length Scale OUTPUT
A N ~ Number of Driving Frequency RK ~ Driving
INPUT Y RK| N2 ~ Number of Gust Location Frequency

T RK

14

Driving Freguency
H RR ~ Total Response

RR ~ Response
To Turbulence

S 1. Reads Driving Frequency
7 2. Qutputs RK & RR
RK RR
SUBROUTINE SUBROUTINE SPEC

Coeff, 1&2 Determines Spectrum

Setup Coef. of Wing Tip Velocity
For Bessel fctn
approximation

RK, TL RR

FUNCTION TSPEC
Determines Atmospheric
Cross Spectrum Between

Gust Location

RK BSL2
BSL1

FUN BSL2 and BSLI1
Evaluates Modified Bessel Function of Second Kind
5/6 and LS/6 Order

'

FUNCTION POLY
Does Polynomial Evaluation

(:) Input/Output

(] Subroutine

1RK Variables Passed Between Subroutines
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A.5 PROGRAM MODIFICATION

The computer code is actually three programs: the free vibra-
tion program, run on the IBM 360 at The University of Tennessee,
Knoxville; and the forced vibration and spectrum analysis programs,
both run on the PDP 11 at The University of Tennessee Space Institute.
The input-output data format is compatible between programs, and all
three programs may be changed and extended. Listed below are changes
that must be made to each program for different wings.

The free vibration program was written for application to any
wing. To adapt this program to a different wing, the function EI,
specifying bending stiffness along the span, must be changed. Also, the
functions EIP and EIPP, which are the first and second derivatives of
EI, might need to be changed if EI is more complicated than a step func-
tion. The array RA, which defines the wing's semi-chord along the span,
and the array X, which defines the mode position, must be changed.

They are defined in subroutine STRK. Finally, the function RM, the mass
per unit length, must be corrected.

The forced vibration program is extremely simple to modify for
other aircraft. The array X, specifying the gust locations, must be
changed in MAIN. Also, in MAIN the constants BR, reference semi-chord;
S, surface area of wing; and U, mean flight speed; must be changed to
fit the airplane. Finally, the function RA, wing semi-chord distribution,
must be altered.

There are only two constants that must be changed to modify the

spectrum analysis program for other airplanes. These are the reference
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semi-chord, BR, and the mean flight speed, U. This program is most
likely to require change due to a new distribution of the atmospheric
turbulence cross spectrum, which will require that.function TSPEC be
rewritten. The program can be modified to give the power spectrum of
the root bending or wing deflection at any point of the span by

redefining the response function, the array Z.
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A.6 PROGRAM LISTING

CUMMUN/EDAT/EEE
EEE=3000000000,0
CALL D1

CALL D2

CALL D3

StTop

Enp

SUSROUTINE Dt
Cx¥* TH1S PRUGRAM IS USED FUR DETERMING WING'S NATURAL
FREQUEUCY AND MODE,

1T USES A BISECTIUN LIKE METHOD TU 1MPRUVE THE GUESS
Ol THE FREQUENCY AdD MAKES THE CHARACTERISTIC DETERMINANT
VANISH,

RUNGE=-KUTTA FEHLBERG 7&8 IS USED TO DETERMINE SOLUTION
TO DIFFERENTIAL .EQN 1T HAS VAIRABLE SIZING BETWEEN
FIXLED NUDES,

SIHAPSOHS METHOD 1S USED TO INTEGRATE FOR THE AREUDYNAMIC
CRUSS TERNS AND GENERALLZED MASS,

Tilk PRUGKAM HMAYDBE ADUPTED BY CHANGING FUN,.,.SEl

(THE FULCTI0W DESCRIBING THE DISTRIBUTION UF THE PRODUCT
YOURG'S ELASTICLTY AND SECTI1ONAL mASS MUENT, IF SEXI 1S 1TU
HAVE DERIVATIVES UP TuU 'lHE SECUND ULRDER FUN,,.FUNEV NEEDS TO BE
CHANGED Tu INCLUDE THEM In THE DIFFEREMTIAL EQN, THE WING
PLAN ARRAY, KA, WILL NELD TU BE CuHANGED,

C¥x¥NC=THE NUMBER UF MUDE TU START CALCULATING

Cx¥xW=IiiEk FRIST GULSS OF THE NATURAL FREQUENCY OF THE NC MODE
Cx¥¥H=STP S1ZE FUR SEARCH KUUTIHE

Cx*4N=TUTAL NUMBER OF MODES TO CALCULATE

CxxkNN=iiuMpkR OF NUDES TO CALCULATE MODE ON

REAL¥*8 W,H

NC=2

H=2,0D0

w=4,000

N=4

Ni=151

CALL STRK(NN)

CALL SZERU(W,H,N,NC,NN)

ReETURN

END

[eNoNeRe NN Re N2 s e N e e X N2 X2 s N2 R 2]
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anonnn

CH¥E%

ChF%k

CHEXX
Crkxs
Cxxk#
CHxxs
Chkx¥
CHk%x
ChR¥x

103
101

102

200

104

O00o0n

Cx*x
Cxxx
C*x*%
Chxx

SUBROUTINE SZERO(W,H,N,HC,NN)

THIS SUbKRUUTINE STEPS ALONG THE FREQUENCY DOMAIN UNTILL

Il BRACKELS THE MNATURAL FREGWUENCY AND THE CALLS A BISECTION
ROUTINE AND A SECANT ROUTINE Tu IMPRUVE THE WIDTH OF THE BRACKET
THE SUBRUUTINE FINALLY CALLS SUB...DMUDE TU DETERMINE THE
MUDE, AND THEN CALLS COEF TU SeT UP THE INTERGRATIUNS OF MODES
AD TAELR PRUDUCTS.

Bl & BUSERKROR BOUNDS FUR RUNGE KUTTA

Wl & W2=BRACKETS FUR FREQUENCY AND STEPS FOR THE SEARCH RQUTINE
F1l & F2=VALUES OF THE CHARACTER1ISTIC DETERMINTE FOR Wi & W2
NSNUMBER OF BEIGENVALUES TO BE SEARCHED
W=GUESS FUR EIGEN VALUE

H=3TEP SIZE FOR SEARCH

NC=NUMBER UF THE FR1ST MODE TU CALCULATE
NN=NVUMBER OF KODES TQ CALCULATE MUDES ON
I=fUMBER OF MODES CALCULATED DURING PROCESS
ReEAL*8 W,H,Wi,W2,F1,F2,EL,EU,Y,X
CUMMON/FACT/Y(8,151),X(151)

DIMENSION YY(151)

1=0

Nl=Ww

EL=.0001D0O

Eu=,001D0

CALL FKFUN(W!,Fl,EL,EU,NC,NN)

W2=wl+H

CALL FUN(W2,F2,EL,EU,NC,NN)
IF(F1*F2,LT,0) GO Tu 102

Wi=w2

Fi=F2

Gu TO 101

CUnNTINUE

CALL B1SEC(W1,F1,W2,F2,NC,NN)

CALL SECANT(W1,F1,W2,F2,NC,NN)

CALL DRUDE(YY,NN)

WRITE(G6,200) W2

FURMAT(2X,F20.10)
WHI1E(6,200)CYY(J),J=1,NN)

I=1+1 '

WI=H2

CALL CUOF(NC,YY,WS,NN,I)

NC=HC+1

IF(l.GEL.N) GU TO 104

Wi=v2+H

GO TO 103

RETURN

END

SUBROUTINE FUN(W,F,EL,EU,NC,NN)

TH1S SUBROUTINE FIXES THE 1INITIAL VALUE FUR THE SOLUTION

AnND THEN CALLS SUB.,.RK7(RUNGE KUTTA ROUTINE) TO DETERMINE SOLUTION
AFTER WHICH THIS SUB CALCULATES THE VALUE OF ThE CHARACTERISTIC
DETERMINDAUT,

L & EU sERRUR BOUNDS FOR RUNGE KUTTA
NC=WHICH MODE WORKING CN DETERMING

Y=FUNDAMENTAL SOLUTLIUNS TO DIFFERENTIAL EQN OUTPUT FROM RK7
F=VALUE UF CHARACTERISTIC DETERMINTE

KEAL*8 RK,w,F,EL,EU,Y, X

COMMUN/FACT/Y(8,151),X(151)

COMMUN/EGNVL/RK

RK=W
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C INITIAL COrDITION TEST FUR EVEN OR ODD MODE

100

bu 100 i=1,8
Y(1,1)=0.D0
IF(NC,EG,2,0R,NC,EQ,4) GO TO 101

"C INITIAL COMDITION FOR ODD MODE

¥(2,1)=1,D0
Y(8,1)=1,00
GO TO 500

c INITIAL CONDITION FOR EVEN HODE

500

102

100

iol

aQaaaco

CHREXE
CHExk
CHREX
CHRX¥

Y(i,1)=1,D0

¥(7,1)=1,D0

CALL RK7(8,NN,EL,EU)
F=Y(3,NNY*Y(B,NN)=Y(7,NN)*Y(4,NN)
RETUKN

END

SUBRUUTINE BISEC(X1,F1,X2,F2,NC,NN)
KbhAL*8 X1,X2,F1,F2,FM,XN,EL,EU
CCv=,01

EU=,001D0

EL=,0001D0

AM=(X1+4X2)72,D0

CALL FUN(XM,FM,EL,EU,NC,HKN)
IF(F1*%FM,LE,0,D0) GO TU 100
X1=XM

Fil=FM

Gu TU 101

X2=XM

F2=Fd

KE=VABS(X1=X2)/X1
IF(KE,GT.CCB) GO TO 102

RETURH

END

SUBRUUTIMNE FUNEV(K,X,Y,F)
TH1S SUHROUTINE SUPPURTS THE RUNGE KUTTA AND DESCRIBES THE
DIFFERENTIAL EQN

TH1IS 5UB WILL WEED CHANGING IF SEl1 IS TO HAVE DERIVATIVES
UrR IF THE TORSIONAL MODES ARE BEING DETERMINED
KR=OQRDEK 0OF THik TAYLOK SERIS TERMS
F=ODEKLIVATIVES VALUES
Y= UNDARNENTAL SOLUTION
W=FREGQUENCY
REAL*3 F,Y,DRM,W,SEI,X
DIMENSION F(B8,13).,Y(8)
CUMMNI/ZEGNVL/W
FCL,K)=Y(2)
F(2,K)=Y(3)
F(3,K)=Y(4)
F4,R)SURM(X)*nx%x2%Y(1)/SEI(X)
F(5,K)=Y(6)
F(6,K)=Y(T7)
F(7,K)=Y(8)
F(B,R)=DRM(X)*n*x2*%Y(5)/SE1(X)
RELURN
END
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FUNCTION SEL(X) -

C*¥¥x X=DISTAHCE FROM SEMI SPAN
I8MPLICLIT REAL#¥8 (A=H,C=Z)
Sk1=3000000000,D0
IF(X.GE,.11,D0) SEI=300000000,00
RETURN

END
SUBROUTINE SECANT(X1,F1,X2,F2,NC,NN)

REAL*8 X1,F1,X2,F2,XM1,¢P,DX, XM, FN,CCS,EU,EL
LL=.00000600010D0
Eu=,00000001D0
CCb=,00010L0
XMl=X1
CALL FUN(X1,¥F1,EL,EU,NC,NN)
CALL FUN(X2,F2,EL,EU,NC,NN)
103 FP=(F2-F1)/7(X2-X1)
DX==t"1/FP
X=X1+DX
CALL FJUu(XM,FM,EL,EU,NC,NN)
WR1ITE(6,200)X1,F1,X2,F2
200 FURMAT(2X,2(D21,14,2X,021.,14,2X))
C IF(DABS(XM=XM1)/XM) LT.CCS) GO TO 101
IF(DABS(FM) .LT,CCS) GU TO 101}
18 (Fn*F1,LE.0,DO) GO TU 500
X1=XM
Flz=FM
Aili=xn
Gy Tu 103
500 X2=XM
F2=FHM
Xitl=XM
Gu TOU 103
101 X2=XM
F2=FM
WRITkE(6,201) X2,F2
201 FORMAT(2X,D21,14,2X,D21,.14)
RETURN
Eilb
SUBRUUTLNE DMODE(YY ,NN)
Re Al *xg Y,X,Cl 'CZ'D
CUMMUMN/FACT/Y(8,151),X(151)
DIMENSTON YY(151)
D=Y (L ,NH)*Y(T7,NN)=Y(5,NN)*Y(3,0NN)
Cl=Y(7,NN)/D
C2=-Y(3I,NN)/D
bu 100 1=1,NN
100 YY(I)=C1*Y(1,I)+C2%Y(5,1)
RETURN
END
FUNCTION DRM(X)
IMPLICIT REAL*8 (A=H,0-2)
DikM=130,D0
IF(X.LE,4.,D0) DRM=2205.,D0
IF(X.LE.11,D0,AND.X,GE,.8,D0) DRM=2600,D0
RETURU
EnD
FUNCTLIUR RM(X)
Rl"‘=130'
IF(X.LE.4,) RM=2205,
IF(X,LE.11,+AND . X.GE.8.) RM=2600,
RETURN
ERD
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100
200

CHExk
Ch%x
Cr%kx
CHxx
Cr*x
CHEx
CH¥x
CR*k
CHkx

C¥x¥

601

600

CHxx
500

101

102

400

FUNCTION SIMP(Y,H,N)

DIMENSION Y(N)

T1=0,

J1=N=2

T2=0,

bu 100 1=3,J1,2

Ti=Ti+Y(X)

bu 200 I=2,N,2

T2=Y(I1)+T2
SIMP=H*(Y(1)+Y(N)+2,%T1+4,%T2)/6,
RETURN

END

SUBRUUTINE COF(N,YY,Ww2,NN,I1)
THIS SUBROUTINE SETS UP THE FUNCTIONS FOR INTEGRATION
YY=NEW HODE THEN LATER USED AS SCRATCHED ARRAY
RP=AKRAY Ul MODES

A=SFREQUENCY

GH=GERKERALTIZED MASS

A & b=AREODYHAMMIC CROSS TERMS
KA=4ING PLAN

N=MUMBLER OF MODE BEING WROKED ON
NN=HUMBER OF NUODES

Li=nUdBER OF TIMES COF CALLED
CUMHUN/DATARA/RA(LS1)
COMMUN/TRANL/W(S),GM(5) ,RP(5,151) ,A(5.5),B(5,5)
LIsEUSIUN YY(151),XX(151),RR(151)
REAU ULATA

H=33,/(til=1)

IF(It,GT,1) GU TO S500

DU 601 1I=1,HN

XX(I)=(1=1)¥H

WM=il=1

vely=o,

GM(1)=40000.0

DO 600 1=1,n8N

RP(1,1)=1,

AC1,1)=45,038925

B(1,1)=52.939763

CALCULATE Wkd DATA

CuiiTiwue

LU 101 I=1,uN

RP(H,I)=YY(I)

PO 102 1=1,MNN

AL=RM(XX(1))

Bl=kP(d,1)*RP(N,I)

IY(Ll)=Al*n]

CULLINUE

GHM(N)=SIMP(YY,H,NN)*2,

Win)=w2

DO 104 J=1,N

Wk2=N/2,

NRi=J/2,.

N2=N=-24NR2

Wi=J=2%xuR1

IF(N2,EQ,0,AND H1,EQ,0) 6O-TO 400
IF(J.rd,1) GO TO 400
IF(N2.,E0.1.AND,N1.,EQ,1) GO TO 400
A(l,J)=0.0

B(N,J)=0,0

GU TH 105

CudTINUE
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103

105
104

CH4x
Cxxkk
Cr¥x%*
CxEXX

100

DO 103 I=1,6N - .
YY(L)SRACI)*RP(J,I)*¥RP(N,I)
RR(L)=RA(1)*YY(I)
A(N,J)=SIMP(RR,H,NN)
B(N,J)=SIMP(YY,H,NN)
CUNTINUE

CUNTLNUE

‘RETURN

END

SUBROUTINE STRK(NN)

THIS SUBRUUTINE INITIALIZES THE COEFICIENTS FOR RK7
FIXES THE NODES AND WING PLAN
NR=NUMBER OF NODES

A,B,C = CORFFICINIS FOR RK7
X=nNUDE VALUES

RA=WING PLAM ARRAY

REAL*8 A,B,C,CH,X,Y,DEL
CUMMUN/DATARA/RA(151)
CUMMUN/RKC/A(13),B(13,12),C(13),CH(13)
COMMUN/FACT/Y(8,151),X(151)
DEL=33,D0/(ilil=1)
DEL2=33,/7(Nil=1)
ND=(wWh=1)/3,

RM1=(iili=1)/3,

DU 100 I=1,NN
X(I)=(I=1)*DEL

RA(TI)=1,0
IF(l1.GT,WDIRA(I)=1,=,027%(1~RM1)*DEL2
CUNY1LUE

ACl)=0,00D0

A(2)=2,00/27.D0
A(3)=1.D0/9.D0
A(C4)=1.D0/6.D0
A(S)=5,10/12.D0
A(6)=1.00/2.00
A(7)=5,00/6,D0
A(8)=1.D0/6,D0
A(9)=2.D0/3.D0
AC10)=1.0L0/3,D0

A(Ci1)=1.00

A(12)=0,D0

A(13)=1,D0

B(1,1)=0.0D0
B(2,1)=2.,00/727.D0
B(3,1)=1,D0/36.D0
B(3,2)=1.00/12.D0
B(4,1)=1,0L0/24,D0
B(4,2)=0,D0
B(4,3)=1,D0/8,D0
B(5,1)=5,00/12.D0
B(5,2)=0,0D0
B(5.3)=-25,D0716.00
B(5,4)=25,p0/16,D0
B(b,1)=1,D0/20,00
B(6,2)=0,D0

B(6,3)=0.D0
8(6,4)=1,00/4,D0
B(6,5)=1,00/5,D0
B(7,1)=-25,00/108,D0
B(7,2)=0,D0

b(7,3)=0,0D0
B(7,4)=125,00/108.D0
B8(7,5)=-65,00/27.00
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B(7,6)=12%,D0/54,D0
8(8,1)=31.00/300.D0
B(Y,2)=0,0D0 '
B(8,3)=0,D0

B(8,4)=0,D0
B(8,5)=61.00/7225.D0
B(8,0)==2,D0/9,D0
B8(8,7)=13.00/900,D0
B(9,1)=2,.D0

B(9,2)=0.D0

b(9,3)=0,.b0
B8(9,4)=-53,D0/6,D0
B(9,5)=704,00/745,D0
B(9,6)=-107,.D0/9,D0
B(9,7)=67,00/90.,D0
B(9,8)=3,00
B(10,1)=-91.D0/108,D0
8(10,2)=0.0D0
B(10,3)=0.D0
B(10,4)=23,D0/108,D0
B(10,5)==976,D0/135,00
B(10,0)=311,D0/54,.D0
8(10,7)==-19,00/60,D0
B8(10,8)=17,00/6,D0
B(10,9)==-1,D0/12.D0
B(11,1)=2383,00/4100,D0
B(11,2)=0,.D0
B(11,3)=0,L:0
B(11,4)=~341,D0/164,0L0
B(11,5)=4496,0G/1025,D0
B(11,6)=-301.00/82.D0
B(11,7)=2133,00/4100,D0
B(11,8)=45.D0/82,00
B(11,9)=45,00/164,D0
B(11,10)=18,D0/41,D°
B(12,1)=3,D0/205,D¢0
B8(12,2)=0,D0
B(12,3)=0,b0
bB(12,4)=0,b0
B(12,5)=0.Dh0
B(i12,6)==6,00/41,00
B(12,7)==3,00/205.D0
B(12,8)==3,00/741.00
B(12,49)=3.ND0/41.D0
B(12,10)=6,00/41,D0
B(12,11)=0,0D0
B(13,1)==1777.,00/4100,D0
B(13,2)=0,D0
8(13,3)=0,D0
B(13,4)=-341,D0/164.D0
B(13,5)=4496,D0/80025,D0
65(13,6)=~289.D0/82,D0
B(13,7)=2193,D0/4100,.D0
B(13,6)=51,00/82.D0
B(13,9)=33,D0/164,.D0
B(13,10)=12,Db0/41,D0
B(13,11)=0,D0
B(13,12)=1,D0
C(1)=41.D0/840,.D0O

.€(2)=0.D0

C(3)=0.D0
C(4)=0.D0
C(5)=0,00
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C(6)=34,D0/7105,D0
C(7)=9,00/35.D0
Cc(8)=9,00/735,D0
C(9)=9,00/280,D0
C(10)=9,00/280,D0
C(11)=41.D0/840,D0
C(12)=0,n0
C(13)=0,b0O
CH(1)=0,00
Cil(2)=0.D0
CH(3)=0.D0
CH(4)=0.b0
CH(5)=0,D0
CH(6)=34,00/105,D0
CH(7)=9,b0/35,D0
CH{8)=9,D0/35,DN0
CH(9)=9,00/280,D0
Cri(10)=9,00/280,Nn0
CH(11)=0.D0
CH(12)=41,D0/8B40,D0
CH(13)=41,D0/840,D0
RETURN
END
SUBROUTINE RK7(NS,NN,EL,EU)
C¥%x¥ RuUiGik KUTTA FEHLBERG SEVENTH ORDER
Cx*¥*x EL=fKRUR LuUwcRkR BUUND
C*¥*¥¥ EUspKROK UPPER BUOUND
Cxxx NS=NUMPER OF SYSTEM OF EQN
Ck¥*¥ Y=HOLUTION
Cx¥% Ju=LUMBER OF PTS TUO DETERMINE THE SOLUTION
C*%¥ RL=LENGIH OF INTERVAL
DIMEnsSIuN Yu{(s8),F(8,13),YY(8)
DIMENSIUN DY4(8),DY5(8),Y1(8)
CUMMUN/RKC/A(13),8(13,12),C(13),CH(13)
CuMMUN/FACT/Y(8,151),X(151)
REAL*8 DY4,DYS,XX,YY,TH,A,8,C,F,D0D1,DD2,H,Y1,Y0,CH,EL,EU,X,Y
bu 101 I=1,NS ;
101 Yo(1)=Y(1l,1)
NT=HN=1
L=1
C**¥ MAIN Du LUOP INCREAMENT TO EACH NODE
DU 100 f1=1,NT
NC=0
HsX(I1+1)=X(I1)
Gu TO 203
207 L=L-%
G TU 203
206 L=L+1
NC=1
203 DU 201 I=1,NS
201 Y1(I)=Yu(I)
TH=H/L
C*¥*¥ DU LUUP FOR STEPS BETWEEN NODES
by 200 12=1,L
Cx¥x*% DETERMINE THE NEEDED FUNCTION EVALURATION
DU 300 K=1,13
KiM=k=1
bu 301 J=1,NS5
XX=X(I1)4+TH¥(12~1)+A(K)*TH
YY(J)=Y1(J)
IF(KM.EQ,0) GO TO 303
DO 302 13=1,KM
302 YY(U)=TH*B(K,I3)*F(J,13)+YY(J)
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303
301
300
CH¥% .

500

402
401
CHxx

202

204
205
200

102
100

annoaoacaoan

no
* *
* *
* *

C¥¥%
C¥*x
C%x
Cxxx
CHxx
(11
Ch*¥
Ch%x

CUNTINUE

CONTINUE

CALL FUNEV(K,XX,YY,F)
DETERMIGE SULUTION VALUE FOR END UF STEP

DU 500 1=1,NS

DY4(I)=0,0

DY5(1)=0.0

DO 401 I=1,NS

DO 402 K=1,13

DY4(L)=TH*C(K)*¥F(I,K)+DY4(I)
DYS(I)=TH#*CH(K)*F(I,K)+DY5(I)

COUNTINUE
ERRUK AND STEP SIZE CONTROL

DD1=DABS ((DY4(1)=DY5(1))/(DY4(1)+Y1(1)))

DD2=DABS ((DY4(5)~DYS(5))/(DY4(5)+Y1(5)))

1 (bl LT ,EU,AND ,DD2,LT.EU) GO TO 202

GU TO 208

IF(pbdl,GT.EL,AND, DD2 GT.EL) GO TO 204

IF(L.EG.,1) GO TO 204

IF(NC,EuW,1) GO TO 204

GU TU 207

CUNTINUE

Py 205 1=1,NS8

Y1(I)=Y1(1)+DY4(I)

CUNTINUE

DO 102 1=1,NnS

YO(l)=Y1icI)

Y(1,I1+1)=Y0CI)

CONTINUE

KETURN

END

SUBRUUTINE D2

TH1S PRUGRAM DETERMINES THE AMPLITUDES OF THE DIFFERENT
MUDES Tu A SINUSUDAL GUST AT THE DIFFERENT STATIONS ALONG
THE WING, SUB.e,.N0 TAKES CAkE UF 1INPUT AND OUTPUYT PLUS
SETS UP THE COBLFICLENTS THAT ARE DRIVING FKEGUENCY INDEPENDENT
SUBRUUT1IWE CUEF SET UP Tht COEFFICLENT MATRIX FOR EACH DKRIVING
FREQUENCY, WHILE SUB...GAUSS DOES HALF OF THE REDUCTIUN AND
SUB...BACKS FINISHES THE REDUCTIUN AND DUES BACK SUBSITUTION
FOR THE DIFFERENT NON~HOMOGENOUS VICTORS CORRESPONDING TO
DIFFERENT GUST LUCATIONS,

NiN=WUMBER UF NOUDES THE MODES ARE DETERMINE ON

N2=NUMBER OF GUST LOCATION

NN=151

N2=20

CALL DO(NN,HN2)

RETURN

END

SUBROUTINE DO(NN,N2)
THIS SUBRUUTINE TAKES CARE UF LINPUT AND OUTPUT
AHD PERFURMS OPERATIUONS THAT ARE DRIVING FREQUENCY
INDEPENDENT, MEANING GAMA AND OMEG,

Y=3ULUT1UN, AMPLITUDES OF MODES
RPsMOUE ARRAY
X=GUST LOCATION
A,B=AERUDYWNAMIC CRUSS PRUDUCTS

W= ALURAL FREQUENCIES OF MUDES

GM=GEHNERALIZED MASS UF MUDES
UMEG=KEDUCED NATURAL FREQUENCY

GAMA=RUN DIMENSIOHAL Git

CUMMUN/SUL/Y(20,5)

COMMUON/TRANL/W(5),GM(5) ,RP(5,151),A(5,5),B(5,5)
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CUMMUN/TRAN2/RRK(37)
CUMMUII/TRAN3/SY(37,19,5)
COMMUN/EDAT/EEE
- COMMUN/FAC/PTL,BR,S,R0O,U -

DIMENSIUN X(20) ’
COMPLEX Y,SY
CUMPLEX CHMPLX
CUMMON/DAT/GAMA(S) ,0KEG(5)
N=37

Cc50 FUORMAT(2X,E14.7)

C Wr1TE(7,50) EEE

. Pl=3,14159

BR=19,0/2.0
5=960,0
RU=,0765
U=575,0

CXx%%x PEKFIIRM ARITHMATIC
bu o001 1=1,5
GAMA(L1)=GM(1)/(PI¥RO*S*BR)
UMEG(I)=w(1)*BR/U
JN=1
DU 602 J=1,JN
A(L,J)=A(I,J)*BR/S
B(l,J)=b(I,J)*BR/S
A(J,L)=A(I,J)
B(J,I)=8(1I,J)

602 CONTINUE
601 CUNTINUE

DO 500 I1=1,37

IF(I.,LE,.10) RK=1/1000,
IF(I.LE,19,AND,I,GT,10) RK=(1=9)/100,

1IF(1.LE.28,AND,X,GT,19) RK=(I=18)/10,
IF(1.6T,.28) RK=(I=27)
DEL=33,/(N2-1)
N2M=N2=~1
bu 100 I1=1,N2M

100 X(i1)=DEL*(I1-,5)
CALL COLF (RK,X,DEL,N2M,NN)
CALL GAUSS(5,N2M)
CALL BACKS(N2M,S5)
RRK(1)=RK
DU 1 J=1,N2M
bu 2 J2=1,5
SY(1,J,J2)=Y(J,J2)

2 CONTLiiUw
1 CUNTINUE
C WRITE(7,101) RK
C101 FURMAT(2X,E14,.7)
C bu 102 y=1,N2H
C #RITE(7,103)(Y(J,I1I1),I1=1,5)

Ci¢3  FORWMAT(1X,3(2E13,6))
C102 CUNTIHUE
500 CUNTINUE

RETURN
SUBRUUTINE COEF(RK,X,DEL,N2M,NN)

C THIS SUBRUUTINE SETS UP COEFFICIENT MATRIX AND THE DIFFERENT
C NUil HOMUGENOUS VICTURS, )
Cx* C=CUEFFICIENT MATR1X
C*x* D=ARRAY UF Huil HOMOGENOUS VICTOR
C*x*x C=CUEFICIENT ARRAY
CH%x% RK=RELUCEDL FKEQUENCY
C*x%x XzLUCATIUNM OF GUST
CUMMUN/LS/C(5,5),D(20,5)
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CUHMON/DAT/GANAC(CS) ,UMEG(S)
CUMMON/TKANL/W(S) ,GM(5) ,RP(5,151),A(5,5),B(5,5)
CUMMUN/FAC/PI,BR,S,R0,U
D1mbnSTid X(20),51(5,5)
COwPLEX C,CI,D,CC,RKK
CUrPLEX CMPLX
Cxxx READ DATA
Ci=CuPLX(0,,1,)
Do 103 1=1,5
vy 104 J=1,5
C(1l,J)==RK**¥2%¥A(1,J)+2%CI*¥RK*CC(RK)*B(I,J)
IF(l.ivE.J) GU TO 901
CCIL,Jd)=C(I,J)+GAMA(I)*(OMEG(I)**2=RK%%2)
901 Si(I,Jd)=CABS(C(I,J))
104 CORTINUE
103 CONTIWNUE
C PO v02 1=1,5
DU 106 J=1,N2M
DU 105 1=1,5
VD(J,1)=2%¥BR/S¥RA(X(J))*RPH(I,X(J),NN)*RKK(RK)*DEL
105 CUNTINUE
106 CONTINUE
RETURN
END
FUNCTION RPH{I,Y,N)
CUMMUN/TRANLI/W(5),GM(5),RP(5,151),A(5,5),B(5,5)
DEL=33,/(N=1)
WN=ABS(Y) 7DEL*1
RS=ABS(Y)/DEL+1,-NN
KPH=HP(1,NN)+KS*(KP(1,NN+1)=RP(I,NN))/DEL
IF(Y.LT.,0.0) GO TO 500
GU TOU 600
500 CuNTIHUE
IF(14EW,3,0R,1,EQ.5) RPHz==RPH
600 KETURHN
END
FURCTIUN RAC(Y)
RA=1=,027%#(ABS(Y)=11,)
1F(ABS(Y),LE,.11) RA=1,
RETURN
ERD
FUNCTION RY1(X)
Z=(X/3.)%%2
RY1=((((((,0027873%Z2=,0400976)%2+,3123951)%2-1,3164827)%Z
+42.1682709)%2+,2212091)%2=,6366198+,6366198*%X*%ALOG(X/2,)*RJ1(X)
+)/X
RETURN
END
COMPLEX FUNCTION CC(RK)
C TH1S FUNCTIUN CALCULATES THE THEODORSEN FUNCTIONS
CumPLEX CI
COMPLEX CMPLX
Cl=CMPLX(0,,1,)
PJ1=RJ1 (RK)
PJUO=RJO(EN)
PYl=RY1(KK)
PYU=RYOQ(RK)
F=PJ1*(PJI4PYO)+PY1%(PY1=-PYO)
G=PY1*¥PYO+PJ1¥PJO
HE(PJL+PYO) *¥%2+(PY1=PJO) %¥%x2
CC=(F+C1l*G)/H
RETURN
EnND
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C

am

CHk¥
CH%x
CA¥x
Cxxx

104
103

105

COMPLEX FUNCTION RKK(RK)

FULCIIUN DETERMINES THE GUSf FORCE FUNCTION

CukPLEX CI,CC

CUMPLEX CMPLX

Ci=CMPLX(0,.,1,.)

PJ1=RJ1(RK)
REASCC(RA)*(RJO(RK)=CI*PJ1)+CI*PJ1
RETURK

isivD

FUNCT1ON RJI(X)

Z=(X/3.)%%2

RI1I=((((((,00001109%Z=,00031761)%Z+, 00443319)*2-.03954289)*2

++.21093573)%2~-,56249985) %2+,5) *X
RETURN

END

FUNCTIUN RJO(X)

Z=(X/3,)%%2

RJIO=(((((.00021%7Z~,0039444)%Z+,0444479)%Z2-,3163866)%2+1,2656208)+#

+Z-2,2499997)%2+1,0
RETURN

END

FUNCTIGN RYO(X)
22(X/3,)%%2

RYO=(((((~,00024846%Z2+.00427916)%2-,04261214)%Z+,25300117)*2
+-.74350384)%2+.6055936)%24,36746691+,6366198*¥RJ0(X)*ALOG(X/2,)

RETURHN
END

SUBROUT LNE GAUSS(H,N2)

THIS SUBKUUTINE DUES GAUSSIAN ELIMINATION FOR
MAYKIX.  SCALED PARTIAL PIVOTING IS USED,

CuMilIN/LS/C(5,5),D(20,5)
COMMUN/Z/PIVOT/ZIPEN(S)
DIMENSIUVNH S(5)

CuttPLEX C,D
h=PIVOT IUDEX
C=CUFF1C1ENT ARRAY
D=iINBUNOGEMNUS VICTOR
N=pUNBER OUF EQN

Du 103 1=1,N

IPEN(I)=1

3(1)=0,

by 104 J=1,N
IF(CABS(C(I,J)).GT,S(1)) S(I)=CABS(C(I,Jd))
CUNTINUE

NM=n=1

DO 100 KK=1,NM

IS=KK+1

IP=1PEN(KK)

J=KK
CM=CABS(C(IP,KK))/S(IP)
DO 105 1=1IS8,N
LP=1PEN(I)
T=CABS(C(IP,KK))/S(IP)
1F(T.LE.CM) GO TO 105
CH=T

J=1

CuinlliUE

IPK=1PEN(J)
IPEN(J)=IPEN(KK)
IPEN(KK)=1IPK

D3 101 1I=1IS5,N

1=1PLtl(1l)

K=1PEnN (KK)
C(I,KKR)=SC(I1,KK)/C(K,KK)
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DO 102 J=15,N
102 C(1,J)=C(I,J)=C(1,KK)*C(K,J)
101 CuNTINUE
100 CONTINUE

RETURN

EN
SUBRUUTIN& BACKS(N1,N2)
C DUELS KEDUCTIUMN Ok THE NON HOMOGENOUS VICTOR AND THEN DOES
C BACK SULSITUTION,
Cx*¥* Nl=NUMBER UF NON HOMOGENUOUS VICTOR
Cx¥x N2=plmENSIUN OF MNON HOMOGENOUS VICTOR
CUNMON/PLVOT/1PEN(S)
CumMli/ZLS/C(5,5),0(20,5)
CUMMUN/SOL/Y(20,5)
CuMPLEX C,D,Y
C**¥#% Kl=S5upuTiod INDEX
C**% REDUCTION UN NON HUMUGENOUS VICTOR
DY vl K1=1,N1
IP=IPEN(CL)
Y(R1,1)=D(K!,IP)
bu 101 KK=2,N2
K=IPkiy(KK)
=0.0
JN="\I\--1
Du 102 J=1,Jld
102 T=C(x,J)*¥Y(K1,J)+T
101 Y(K1,KK)=D(K]i,K)=T
Y(KL,N2)=Y(K1,N2)/C(K,N2)
C¥%*% BACK SUBSITUTION
JJd=nN2
DU 103 K=2,N2
Js=JuJ
Jd=JdJ-1
KK=IPEN(JJ)
T=0.0
Lo 104 J=JS,N2
104 T=C(KK,J)*¥Y(K1,J)+T"
103 {(K1,JJ)=(Y(K1,JJ)=T)/C(KK,JJ)
100 CUNTINUE

RETURNW

END

SUBRUOUTINE D3
C TH1S PROGRAM PERFURMES THE ARTHIMETIC TO DETERMINE WING TIP
C VELUCITY PUWEK SPECTRUM, SUB,.¢+SPEC PERFORMS THE CALCULATION
C AND FUN,..TSPEC EVALURATES ATMUSPHERIC TURBULENCE SPECTRUM,

Cxxx N2=iWUMbER OF GUST STATIUNS
CkxXx N=NUMAER FUR DRIVING FKEQUENCIES
Cx%xx TL=TURBULENCE LENGTH SCALE

CUMMUN/TRAN2/RRK(37)

CUMMON/TRANI/SY(37,19,5)

CUuMMUN/LEDAT/EEE

CUMPLEX SY

CALL Cuklki

CALL CUEF2

BR=19,/2.

bo 101 J1=1,5

TL=60.,%(2%%xJ}1)

N=37 '

N22=20

N22=N22~1
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N2=N22%2
WRITE(T, 202)EEE TL,N2
202 FUNMAT(ZX,'EI '['10 1,'TL-.'F10 2,'“2— 113)
DU 100 1=,
KRh=RKK(L)
RNUSKr*11,/BR
558=0,0
U=575.
Ts=TSPEC(S55,RNU,U,TL)
CALL SPEC(RK,RR,TL,N2,1)
WRI1TE(7,201) RK,RR,TS
201 FURMA'].‘(ZX.E14.7.2X,E14.7.2X.E14.7)
100 CuUNnTINUE
102 CUnIIHUE
101 CONTINUE

RETUKRN

END

SUBRUUTINE SPEC(RK,RR,TL,N2,IC)
C THIS SUBKUUTINE DETERMINES THE SPECTRUM OF THE WING
C "TIP VELOCITY,

C*¥*% RR=TUTAL AIRFLARE RESPONSE
CH*¥ RK=ReUUCE FREQUENCY vp/U
C¥¥*% Z=RESPONSE TU GUST AT ONE STATION
Cx¥% N2=NUMBER OF GUST STATIONS
CumMun/TRANZ2/RRK(37)
CudMMUN/TRAN3/SY(37,19,58)
LIMEASIOUN ¥Y(20,5),2(40)
CoMybLieX Y,C1,2,T7,712,5Y
C*x%x*¥ READ ULATA
CI=CMPLX(04,1.)
Bk=19,/2.
15222142/2
DEL=06,/N2
U=s7s,
bu 100 J=1,H22
bG 2 Jz=4,5
Y(J,J2)=8Y(1IC,J,J2)
2 COnTInUE
100 CUNTIWIUE ]
Cx*%*¥ DETERMINE PLANES RESPONSE
DI} 101 J=1,0822
T=0,0
T2=0,0
bu tou2 1=2,5
LT2=Y(J,1)+T2
1IF(I.EW,3.,0R, I, EQ,5) T2=T2=2.,*%Y(J,I)
102 T=y(J,1)+7T
Z{J)=T2%RK*C1
101 2(J+nN22)=Cl*RK*T
Cxx% pDLETLKMINE PLNES TOTAL RESONSE
TT=0,0
Du 300 1=1,N2
Is=I-1
T=0.0
JH=N2=15
bu 301 J=t,dn
301 I=2%REAL(Z(J)*CONJG(Z(J+IS)))+T
SS=IS*DEL/TL
RNUSRK¥*TL/BR
IF(1S.EQ.0)T=T/2,
300 Tr=TSPEC(SS,RNU,U,TL)*T+TT
Re=1T1
RETURHN
EiND @
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C
C
Cx%x
CHxX
CHx%
Crx*

500

naano

100

101

200

C

100

C

100

FUNCTLION TSPEC(SS,RNU,U,TL)
THIS FUNCTIUN DETERMINES TURBULENCE CROSS AND POWER
SPECTRUM FRUM THE VUN KARMAN SPECTRUM FUNCTION,
SS=SEVERATION DIVIDED 8Y TL(TURBLUNCE LENGTH SCALE)
Ril= w*1L/U0 THE REDUCED FRQUENCY OF TURBULENCE
USFLIGHT SPEED UR MEAN WIND SPEED
TL=TURKULEHNCE LENGTH SCALE

1F(SS.EQ,0,0) GU TO %00
CRUSS SPECTRUM

Z=S5%S0RT(1.+(1,339%RNU)**2)/1,.,339
TSPEC=TL*,10853/U%(4,78112%SS%%(5,/3,)/Z4%%(5,/76,)*BSL1(2Z)
+=55%%(11,/3.)/72%%(11,/6,.)%B85L2(2))

RETURN

CUNTINUE
PUweR SPECTRUM

2=()l ¢ 339%RKRNU)XX2
TSPECSTL*(14(8,/3.)%2)/7(1+2)%%(11,/6.,)/3,14159/U
KRETURN

E8kouTing coeFl
TH1S SUBRUUTINE SETS UP Tiik COEFFIENETS FOR THE POLYNOMIAL
APPROXIMATION FOR THE MODIFRIED BESSEL FUNCTION OF THE
SECOND KIND 5/6 ORDER.
Cutituil/K13/AC10),B8(10),A2(10)

F=b./6.

AC12=1,0/,9405612296

DU 100 I=1,9

ACL+1)=A(I)71/(F+1)

F=z1l.,0=-F

B(1)=1.0/5,56756615

bu 101 I=1,9

BCI+1)=B(I)/1I/(F+1=-1,0)

$5=4,%(95,/6,)%%2

A2(1)=1,

Py 200 1=1,9

A2(1+1)=A2(1)*%(S=(2%1~1)%%2)/8./1

RETURN

END

FUNCTION BSL1(Z)
THIS FUNCTIUN EVALURATES THE MODIFRIED BESSEL FUNCTION
OF THE SECOND KIND S5/6 ORDER
CUMMUN/KL13/A(10),B(10),A2(10)

It(Z2.Lk.2) GO TO 100

Y=1./%

BSLI=SURT(1,5707*Y)*EXP(=-2Z)*POLY(A2,10,Y)

KETUKN

Y=(%2/2.,0)%%2,0

RIP=(Z2/2.0)%%(5,/76,)*%POLY(A,10,Y)
RIN=POLY(B,10,Y)/7((Z2/2.0)*%(5,/6.))
BSL1=(3,141/72/SIN(5,0%3,141/76,0))%(RIN=RIP)
RETURN

END

FUNCTION POLY(CA,N,2) .

THIS FUNCTIuN DUES THE POLYNOMIAL EVALURATIONS
DIMENSIUN A(N)

T=A(N)*Z

Alhzi=2

DU 100 I=1,NN

T=(L+A(N=1))*2Z

PULY=T+A(1)

RETURRN

END
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nanN

100

FUNCTIuN BSL2(Z)
THIS FUNCT10N EVALURATES THE MODIFRIED BESSEL FUNCTION OF THE
SECUND KIND 11/6 ORDER,

CUMMUN/K23/E(10),G(10), E2(10)

IF(Z.Lk,2) GO TO 100

Y=1./2

BSL2=8QRT(1.5707*Y)*EXP(=2)*POLY(E2,10, Y)

RETURY

Y=(2/2.0)%%2,0

RiP=(Z/72,0)%*(11,/6,)%POLY(E,10,Y)

RIN=PULY(G,10,Y)/7((%4/72,0)*%%(11,/6.))

BsL2=(3.141/2/5IN(11,.0%3,141/6,.0))%(RIN-RIP)

RETURN

EdJD

SUBKUUTINE CURF2

THIS SUBROUTINE SETS UP THE COEFFICIENTS FUR THE POLYNQOMIAL
APPROXIMATIUNS OF THe MODIFRIED BESSEL FUNCTION OF THE
SECUND KIMD 11/6 ORDER,

COMMUA/K23/E(10),6G(10),E2(10)

F=1ll./0,

Cxxxx* (il UVER THE GAMMA VALUE OF 1+40RDER *¥%xkxX

100

E(1)=1.,0/1,724362254
bu 100 1=1,9
E(L+1)=E(1)/1/(F+1)

C*¥xxx%x (it MINUS THE ORDER OF THE MODFRI1ED BESSEL *x

101

200

F=1,0=-F

G(1)=1,0/(-0,68107938)

bo 101 1=1,9
G(1+1)=G(1)/1/(F+1-1,0)

E2(1)=1,

bu 200 I1=1,9
b2(1+1)-b2(1)*(5-(2*1 1)**2)/8 /1
RETURN

D
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APPENDIX B
ESTIMATION OF WING STIFFNESS

A major parameter of this study is the beam stiffness. Because
structural information about the B-57 could not be located, this
parameter had to be estimated. A static analysis is used in this appen-
dix to estimate the beam stiffness. We assume that the deflection at
the wing tip is one foot for a 10 g loading of the aircraft in wartime
operation (meaning fuel tanks completely full and aircraft loaded with
bombs both in the fuselage and on the wings). The wing is modeled as
a cantilever beam. The loading on the wing, including structural weight,

fuel and bombs, is depicted:

3,625 1b/ft

1,200 1b/ft

650 1b/ft £
150 1b/ft | Wing with | £ |3001b/f4
Wing fuel and bombs Wing
0 11 22 25 29 33

Fuselage
SSASSSSSSSNSSESSSSSSSSSSSS

Distance from wing tip (feet)

LOADING OF B-57 WING
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The values for the loading diagram were determined from the
Air Force Basic Flight Manual for the B-57. The loading can be written

in functional form using singularity functions:
2(y) = -150<y>° - 500<y - 11>° - 550<y - 22>° + 900<y - 25>°

- 3325<y - 295° + Qey>T)

where Q represents a hypothetical force at the wing tip and is used for
Castigliano's Theorem to calculate the deflection at the wing tip. The

loading equation is integrated twice to give the moment equation:

2 2

M(y) = -150<y>2 - 500<y - 1152 - 550<y - 225° + 900<y - 25>

- 3325<y - 2952 + Q/2<y>°

The form of the beam stiffness must also be specified:

10¢e

TE€ EI

0 22 33
Distance from wing tip (feet)

FORM OF EI FUNCTION
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e is the characteristic beam stiffness and must be determined from this

analysis. The internal strain energy may be written:

33 M2 22 M2 33 M2
= 2ET & © 7 Iy + 20e Y
0 0

22

S|

where n represents the load factor, assumed to be 10 g. According to

Castigliano's Theorem, the deflection is:

33 ), M 22 33
A3 30 4 1 My, 1 oM
h J W e[ Many“maJ Maq &
0 0 22

Substituting the equation for the moment and the derivative of the

moment with respect to the hypothetical force, the equation becomes:

22
%?.: J y['l?o <_y>2 - §g9—<y - 11>2] dx
0

33
1 - 2 2 550 2
+ 10 J y[—%?g-<y> - §%Q-<y - 11> - —ﬁ—-<y - 22>
22
+ 2%9 <y - 25>2 - é%géq - 29>2] dy

Performing the integration, the equation is approximately:

Ae 6
h 9 x 10

Assuming a one foot deflection at the wing tip due to a 10 g Toading
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we get € = 9 X 107. Therefore the beam stiffness distribution due to

design characteristics is estimated as:

8

EI =9 x 10

for y < |11]
7

EI =9x10 for y > |11]
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